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Abstract. The Zener relaxation is an anelastic relaxation process in disordered crystals due
to stress-induced changes of atomic order. We present a model calculation of this process
for a simple cubic lattice gas which is non-interacting except for the exclusion of multiple
occupancies. The relaxation results from the stress-induced formation and dissolution of bonds
between (paired) lattice gas atoms on nearest-neighbour sites. Relaxation spectra are obtained
for the compressibilitys11+2s12 and the shear compliances11−s12. The spectra are proportional
to c2(1−c)2, wherec is the occupation probability of a given site. The frequency dependence of
the spectra is determined by the jump rate of the lattice gas atoms. Compared with a spectrum
for a single relaxation time, the spectrum ofs11 − s12 is moderately broadened, whereas the
spectrum ofs11 + 2s12 shows a sizable broadening. The present results are applicable to both
interstitial and substitutional alloys.

1. Introduction

The Zener relaxation is an anelastic relaxation process in disordered crystals due to a stress-
induced change of the atomic order. The atomic order changes by diffusive jumps of the
atomic constituents so that the relaxation times are related to their jump rates. A detailed
description of experimental data and the theoretical concepts of the Zener relaxation is given
by Nowick and Berry [1].

An important characteristic of the Zener relaxation is that it occurs also in crystals whose
symmetry makes all atomic positions equivalent with respect to an externally applied stress.
It differs, in this respect, from the (conceptionally simpler) Snoek relaxation which results
from a stress-induced population exchange between sites that respond differently to external
stress [1, 2]. The occurrence of the Zener relaxation requires, accordingly, the existence
of spatial atomic configurations of at least two (pairs) or more atoms which differ in their
energy under stress. This fact makes a theoretical modelling of the Zener relaxation far
more complex than that of the Snoek relaxation. The Zener relaxation exhibits further
similarities to the relaxation processes in glasses or polymers [3]. However, the analogy
is certainly not complete since at least the low-temperature anelastic properties of crystals
exhibiting Zener relaxation differ from a standard glassy behaviour [4].

Interstitial alloys are a specific class of compounds, where Zener relaxation is observed.
In such alloys, the host lattice atoms are immobile, at least at low temperatures, whereas the
interstitial atoms can diffuse as a lattice gas. Since the (interstitial) sites of such a lattice
gas are either populated by interstitial atoms (component 1) or by vacancies (component 2),
Zener relaxation can take place precisely as in a two-component substitutional alloy. Metal–
hydrogen systems are an interesting realization of such a lattice gas because of the high
diffusivity of the hydrogen interstitials [5, 6], so the Zener relaxation in these systems was
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intensively investigated, for instance in Pd [7–12] and in Sc and Y [13–17]. It is worth
mentioning that a pure Zener relaxation was studied in these cases since the symmetry of
the interstitial sites of the hydrogen (octahedral sites in face-centred cubic (fcc) Pd and
tetrahedral ones in hexagonal close-packed (hcp) Sc and Y) excludes the occurrence of a
Snoek relaxation.

Because of the complex nature of the Zener relaxation, the presently existing theoretical
models for this process [1, 2, 11, 12, 18–24] are still very crude and approximate. Even
in the simplest case of dilute alloys, where the relaxation can be traced to pairs of the
solute atoms [1, 2, 18], the relaxation kinetics has only been treated in a highly simplified
manner. Experiments on Li pairs in Al [25] are an example of a Zener relaxation study on
such a dilute alloy. The situation is much more complex in concentrated alloys where the
atomic order is no longer describable in terms of isolated pairs of atoms of one of the alloy
constituents. In this case, expressions for the relaxation strength were derived in model
calculations [1, 2, 11, 12, 19, 20, 22–24] which considered, in most cases, the effects of a
stress-induced change of short-range order parameters (a critical discussion of the merits
and the problems of this concept is given in [22]). Further, a model calculation for the
relaxation kinetics of the short-range order parameters was performed [21], yielding identical
relaxation rates for all the order parameters considered. Therefore, this calculation cannot
explain different relaxation rates for different elastic compliances such as, for instance,
experimentally observed in the PdHx system [11].

In this paper, we discuss the Zener relaxation of a concentrated lattice gas that is non-
interacting except for the fact that a given site can be occupied only once. The lattice gas
populates a simple cubic lattice, which excludes a Snoek relaxation [1, 2]. The anelastic
relaxation results from the stress-induced formation and dissolution of bonds between two
(paired) lattice gas atoms occupying nearest-neighbour sites. We derive, rigorously correct
within the model assumptions, the anelastic relaxation spectra, using only three (adjustable)
parameters (the jump rate of the atoms and two parameters describing the lattice strain
from a bond). In agreement with previous models, a relaxation of both the compressibility
s11+2s12 and the shear compliances11−s12 is found, being proportional toc2(1−c2) where
c is the occupation probability of a given site; the shear compliances44/2 does not relax for
symmetry reasons (s11, s12 ands44 are elastic compliances in Voigt’s notation [1, 2, 26, 27],
ands11+ 2s12, s11− s12 ands44/2 are named compressibility or shear compliances although
these quantities are conventionally defined as 3(s11+2s12), 2(s11−s12) ands44, respectively).
The new results of the present calculations address the kinetics of the relaxation process,
expressed by the frequency dependence of the relaxation spectra (or, alternatively, by the
distribution function of the relaxation times). This kinetics is characterized by a relaxation
spectrum ofs11 − s12 that is moderately broadened in comparison with a standard Debye
relaxation (a single relaxation time) [1], and by a relaxation spectrum ofs11 + 2s12 that is
significantly broadened.

The basic assumptions of the present lattice gas model are simpler and the number of
adjustable parameters (three) is smaller than in most previous Zener relaxation theories for
concentrated alloys. The fact that a non-interacting lattice gas (non-interacting except for
the exclusion of multiple occupancies) is considered means that possible energy differences
between different atomic configurations are not taken into account. On the other hand, the
theoretical concept by which the relaxation spectra are calculated for the present model
differs radically from previous procedures. It is based on a straightforward application of
the fluctuation–dissipation theorem to the strain fluctuations that are caused by the diffusing
lattice gas atoms. With the help of this theoretical concept, the relaxation spectra are
calculated rigorously correctly within the model assumptions, without any approximation.
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In particular, the present calculations are the first ones that provide a treatment of the
kinetics of the Zener relaxation that is inherently correct, which means that is free from
approximations and simplifications.

2. The lattice gas model

We consider a concentrated lattice gas that is non-interacting except for the exclusion of
multiple occupancies. The lattice is simple cubic with a lattice parametera, extending over
N lattice sites within a cube of volumeV (a cube for reasons of simplicity). Later, we go to
the limits V → ∞ andN → ∞, whereV/N = a3. The occupation probability of a given
lattice site isc (the concentration of the lattice gas), so that the total number of lattice gas
atoms isNc. Each atom can jump with a jump rate0 to any of its six nearest-neighbour
lattice sites, if this site is not occupied (blocked) by another atom. Accordingly, the mean
residence time of an atom isτres(c → 0) = 1/(60) in the limit c → 0 where no blocking
exists, whereas blocking effects make it larger thanτres(c → 0) with increasingc [28].

An important quantity is the number of bonds between two (paired) atoms occupying two
nearest-neighbour sites (with a distancea). A bond exists if both sites are simultaneously
occupied. Figure 1 shows a two-dimensional example for these bonds. There are bonds of
typesx, y and z, depending on the direction of the line between the two occupied sites.
The total number of bonds of typesx, y andz in V is Zx , Zy andZz, respectively. These
numbers fluctuate in time around their expectation (or average) values〈Zx〉, 〈Zy〉 and〈Zz〉,
and the deviations from the expectation value are1Zx = Zx − 〈Zx〉, 1Zy = Zy − 〈Zy〉
and1Zz = Zz − 〈Zz〉.

Figure 1. A two-dimensional example for the bonds between two nearest-neighbour lattice
gas atoms. The large full circles and the small dots represent lattice gas atoms (or occupied
lattice sites) and vacancies (unoccupied lattice sites), respectively. Each of the existing bonds
is indicated by a line that connects two nearest-neighbour lattice gas atoms. According to the
directions of theX andY axes, the horizontal and the vertical lines represent bonds of typesx

andy, respectively.

Each bond is a point defect whose anelastic behaviour can be described by aλ tensor
[1, 2]. Theλ tensorλ(x)

ij of a bond of typex, for instance, can be written as

λ
(x)
ij =

[
λ1 0 0
0 λ2 0
0 0 λ2

]
. (1)

For symmetry reasons, there are only two independent parametersλ1 andλ2. Theλ tensors
λ

(y)

ij andλ
(z)
ij of the bonds of typesy andz follow from (1) by cyclic permutation. With the
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λ tensors, the lattice strainεij caused by the bonds is given by [1, 2]

εij = (1zx/N)λ
(x)
ij + (1Zy/N)λ

(y)

ij + (1Zz/N)λ
(z)
ij (2)

where the reference state of zero strain is a situation in which the bond numbersZx , Zy

andZz assume their expectation values.
The above definitions complete the description of our lattice gas model. However, one

point remains to be mentioned. The sole fact of lattice strains such as those described by
the λ tensors gives rise to an elastic interaction between the lattice gas atoms, in contrast
to our assumption that these atoms are non-interacting (except for the absence of multiple
occupancies) [1, 2, 26, 29]. In the case of the Snoek effect, where the same problem arises,
Nowick and Heller [2] showed that the influence of the elastic interaction on the relaxation
is insignificant as long as the relaxation strengths are small. The same conclusion holds for
the present situation, so our later results are valid in cases where the relaxation strengths
are small.

3. The fluctuations of orthogonal and normalized strains

3.1. The fluctuation–dissipation theorem

We apply the fluctuation–dissipation theorem [30] to orthogonal (symmetrized) and
normalized strains and stresses [1, 2, 26]. For cubic symmetry, as for our lattice gas, the
complex strain–stress relationship for a given pair of orthogonal and normalized strainε̃

and stress̃σ is described by a single elastic complianceσ̃ (ω), according to

ε̃(ω) = s̃(ω)σ̃ (ω). (3)

The complex compliancẽs(ω) has a real part̃s ′(ω) and an imaginary part̃s ′′(ω). The latter
is also called the relaxation spectrum ofs̃(ω). The imaginary part̃s ′′(ω) is zero in the limit
ω → ∞ and (in the present case) also forω = 0. This means̃s(ω) = s̃ ′(ω) for ω = 0 and
ω → ∞. Because of the normalization, the free enthalpy (Gibbs’ energy) per unit volume
is, in the presence of a static stressσ̃ (ω = 0), given by

g = 1
2 s̃(ω = 0)σ̃ 2(ω = 0). (4)

We consider next the correlation function〈ε̃(t)ε̃(t = 0)〉 for the fluctuations of̃ε in V

with time t . It is an even time function within classical statistics. The fluctuation–dissipation
theorem (classical statistics) relates the imaginary part of the compliance to the correlation
function of ε̃ according to [30]

s̃ ′′(ω) = ωV

2kBT

∫ ∞

−∞
〈ε̃(t)ε̃(t = 0)〉 eiωt dt. (5)

The frequency variation of the real part of the compliance can be obtained from the Kramers–
Kronig relations [30]. The total relaxation1s̃ = s̃(ω = 0) − s̃(ω → ∞) = s̃′(ω =
0) − s̃ ′(ω → ∞) of the compliancẽs(ω), in particular, is given by [30]

1s̃ = V

kBT
〈ε̃2(t)〉 (6)

where the correlation amplitude〈ε̃2(t)〉 is independent oft .
The presence ofV in (5) and (6) follows from the fact that (4) describes the free

enthalpy per unit volume rather than in the volumeV . It reflects also the fact that strain
fluctuations, averaged over a volume, are smaller for larger volume. The volumeV does
not appear in the equations of [30] that correspond to (5) and (6). The reason is that the
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quantities that correspond tõε andσ̃ in [30] are a true displacement and a true force, also in
their dimension, rather than a strain and a stress. Appendix A demonstrates howV shows
up in (5) and (6) if we transform strain and stress appropriately in displacement and force.

3.2. The orthogonal and normalized strains and their correlation functions

Since strain and stress have six independent tensor components each, we can define six pairs
of orthogonal and normalized strainsε̃(ν) and stresses̃σ (ν) [1, 2, 26]. For a cubic system,
the strain–stress relationship for a givenν is expressed by a single elastic compliances̃(ν),
and there exist only three different compliancess̃(1) = s11 + 2s12, s̃(2) = s̃(3) = s12 − s12

and s̃(4) = s̃(5) = s̃(6) = s44/2. Further, sinces44/2 does not relax in the present situation
for symmetry reasons, it suffices to consider the first two of the six pairs of orthogonal and
normalized strains and stresses, associated with the compressibilitys11 + 2s12 and the shear
compliances11 − s12.

We discuss̃s(1) = s11+2s12 first. In this case, the associated orthogonal and normalized
strain and stress tensors are, in tensor notation, defined as [26]

ε
(1)
ij = 1√

3

[
ε̃(1) 0 0
0 ε̃(1) 0
0 0 ε̃(1)

]
σ

(1)
ij = 1√

3

[
σ̃ (1) 0 0

0 σ̃ (1) 0
0 0 σ̃ (1)

]
. (7)

According to these definitions, the strain–stress relation betweenε̃(1) and σ̃ (1) is indeed
described bỹs(1) = s11 + 2s12, and the energy relation (4) holds.

The relaxation behaviour of̃s(1) depends on the fraction of the strainεij from the bonds
in (2) that is represented bỹε(1) (the projection ofεij on ε̃(1)). From the trace ofεij in (2)
and ofε(1)

ij in (7), for instance, we find

ε̃(1) = (1/
√

3)(λ1 + 2λ2){1Zx/N + 1Zy/N + 1Zz/N}. (8)

This result allows the calculation of the correlation function〈ε̃(1)(t)ε̃(1)(t = 0)〉 from the
correlation functions of the time-dependent quantities1Zx(t), 1Zy(t) and 1Zz(t). With
the help of (8),〈ε̃(1)(t)ε̃(1)(t = 0)〉 can be written as

〈ε̃(1)(t)ε̃(1)(t = 0)〉 = (λ1 + 2λ2)
2

3N2
〈{1Zx(t) + 1Zy(t) + 1Zz(t)}{1Zx(t = 0)

+1Zy(t = 0) + 1Zz(t = 0)}〉. (9)

Due to the time-inversion symmetry of correlation functions and since, for instance,
〈1Zx(t)1Zx(t =0)〉=〈1Zy(t)1Zy(t =0)〉 and〈1Zx(t)1Zy(t =0)〉=〈1Zx(t)1Zz(t =0)〉
hold for symmetry reasons, we can write

〈ε̃(1)(t)ε̃(1)(t = 0)〉 = (λ1 + 2λ2)
2

N2
{〈1Zx(t)1Zx(t = 0)〉

+2〈1Zx(t)1Zy(t = 0)〉}. (10)

From this equation and from (5) and (6), the relaxation of the compressibility can be
determined from〈1Zx(t)1Zx(t = 0)〉 and〈1Zx(t)1Zy(t = 0)〉.

For the shear compliancẽs(2) = s12 − s12, the associated orthogonal and normalized
stresses and strains are, in tensor notation, given by [26]

ε
(2)
ij = 1√

2

[
ε̃(2) 0 0
0 −ε̃(2) 0
0 0 0

]
σ

(2)
ij = 1√

2

[
σ̃ (2) 0 0

0 −σ̃ (2) 0
0 0 0

]
. (11)
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The strain–stress relationship betweenε̃(2) and σ̃ (2) is again described by the compliance
s̃(2) and the energy relation (4) holds. Further, it is found from (2) that the fraction of the
strainεij from the bonds that is represented byε̃(2) is given by

ε̃(2) = (1/
√

2)(λ1 − λ2){1Zx/N − 1Zy/N}. (12)

This follows, for instance, from the differenceε11 − ε22 of the two componentsε11 andε22

of the strain tensor in (2). According to (12), the correlation function〈ε̃(2)(t)ε̃(2)(t = 0)〉
can be written as

〈ε̃(2)(t)ε̃(2)(t = 0)〉 = (λ1 − λ2)
2

N2
{〈1Zx(t)1Zx(t = 0)〉

−〈1Zx(t)1Zy(t = 0)〉}. (13)

In the subsequent chapters, we calculate〈1Zx(t)1Zx(t = 0)〉 and〈1Zx(t)1Zy(t = 0)〉
to determine the relaxation ofs11 + 2s12 and s11 − s12. Further, to demonstrate how the
formalism above works in the case of a well known problem, we derive in appendix B
the total relaxation ofs11 − s12 in the case of the Snoek relaxation of octahedral interstitial
atoms in bcc metals [1, 2].

4. The correlation functions of the numbers of bonds

4.1. Occupation numbers and their Fourier representation

We define, for each lattice site at positionR, a time-dependent occupation numberc(R, t)

that is one or zero depending on whether the site is occupied or not. The expectation value of
c(R, t) is c, for all R andt , and the deviation ofc(R, t) from c is 1c(R, t) = c(R, t)− c.
In our calculations, we conserve the total numberNc of lattice gas atoms. Accordingly,
the summations

∑
R c(R, t) and

∑
R 1c(R, t) over theN lattice sites yieldNc and zero,

respectively.
Following Krivoglaz [31], we consider the Fourier representation of1c(R, t),

1c(k, t) = 1

N

∑
R

1c(R, t) eik·R and 1c(R, t) =
∑

k

1c(k, t) e−ik·R. (14)

This transformation is possible since we discuss the limitsV → ∞ and N → ∞ (with
V/N = a3). Later, the second summation is replaced by an integration over the first
Brillouin zone, which corresponds to the transition∑

k

→ N
( a

2π

)3
∫ π

a

− π
a

∫ π
a

− π
a

∫ π
a

− π
a

d3k. (15)

According to (14),1c(−k, t) is the conjugate complex of1c(k, t), and the relations∑
R eik·R = Nδk,0 and

∑
k e−ik·R = NδR,0 hold (δk,0 andδR,0 are one or zero, depending

on whetherk or R are zero or not). Further, the constraint of a fixed number of lattice gas
atoms, expressed by the relation

∑
R 1c(R, t) = 0, leads to1c(k = 0, t) = 0.

A final quantity of interest is the correlation amplitude〈1c(k, t)1c(−k, t)〉, which will
be written〈1c(k)1c(−k)〉 since it is independent oft . According to Krivoglaz [31], this
quantity is given by

〈1c(k)1c(−k)〉 = c(1 − c)/N. (16)

We must consider here that (16) was derived for a case in which fluctuations of the total
number of lattice gas atoms were allowed, whereas the present calculations keep the number
of atoms fixed. An immediate consequence of this constraint is that〈1c(k)1c(−k)〉 is
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zero fork = 0. However, our present calculations require this quantity only fork 6= 0, for
which the difference between a fluctuating and a fixed number of atoms is insignificant for
N → ∞. This is demonstrated in appendix C. For this reason, we shall use, fork 6= 0, the
result of (16) in our calculations.

It is preferable to conserve the number of atoms in the present calculations since a
fluctuation of this number means the possibility of an exchange of atoms between a sample
and its surroundings, due to in- or out-diffusion. This causes an (additional) anelastic
relaxation with relaxation times that correspond to the times required for the in or out
diffusion to take place. Such a relaxation (a type of Gorsky relaxation [1, 5]) differs from
the Zener relaxation and is not considered here.

4.2. The diffusion of the lattice gas atoms

The diffusion of the lattice gas atoms is described by a rate equation for the occupation
numberc(R, t) of a site atR due to diffusive jumps between this site and the six nearest-
neighbour sites atR+ax , R−ax , R+ay , R−ay , R+az andR−az, whereax , ay and
az are vectors of lengtha in the direction of theX-, Y - andZ-axis, respectively. With the
jump rate0 to a given unoccupied nearest-neighbour site, the rate equation can be written
as

〈◦
c(R, t)〉D = 0{−c(R, t)(1 − c(R + ax, t)) + c(R + ax, t)(1 − c(R, t))

+the terms for the sites atR − ax, R + ay, R − ay, R + az andR − az}.
(17)

The first two (explicitly stated) terms in the curly brackets of the right-hand side of (17)
account for the exchange of atoms between the sites atR and R + ax . The first term
describes the jumps fromR to R + ax , which can occur with a jump rate0 if both
the site atR is occupied (factorc(R, t)) and the site atR + ax is unoccupied (factor
1− c(R+ax, t)). The second term stands for the corresponding jumps fromR+ax to R.
Accordingly, the rate equation (17) accounts correctly for all blocking effects. It is further
seen that the quadratic terms in the curly brackets of (17) cancel out. With the identity

1
◦
c(R, t) = ◦

c(R, t), we can rewrite (17) as

〈1 ◦
c(R, t)〉D = 0{−61c(R, t) + 1c(R + ax, t) + 1c(R − ax, t)

+terms withay andaz}. (18)

The left-hand sides of (17) and (18) express an expectation value for
◦
c(R, t) (or

1
◦
c(R, t)) due to the diffusion of the lattice gas atoms, valid under the condition that

the actual values of the occupation numbers, at timet , arec(R, t), c(R + ax, t) etc. This
fact is indicated by the brackets with the subscriptD.

Passing to the Fourier transforms1c(k, t), (18) is now given by

〈1 ◦
c(k, t)〉D = 01c(k, t){−6 + eik·ax + e−ik·ax + eik·ay + e−ik·ay + eik·az + e−ik·az} (19)

where the terms eik·ax , e−ik·ax etc stand for the terms1c(R + ax, t), 1c(R − ax, t) etc
in (18). Considering, for instance, the identity 4 sin2(k · ax/2) = 2 − eik·ax − e−ik·ax , and
usingkxa, kya andkza rather thank · ax , k · ay andk · az, we can write (19) as

〈1 ◦
c(k, t)〉D = −[p(k)/2]1c(k, t) (20)

wherep(k) is defined by

p(k) = 80{sin2(kxa/2) + sin2(kya/2) + sin2(kza/2)}. (21)
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Thatp(k) is independent ofc expresses the fact that the decay rate of density fluctuations in
a concentrated lattice gas as defined in section 2 does not depend on concentration [28, 32].

The integration of (20) yields a diffusion-induced exponential decay of1c(k, t).
However, rather than1c(k, t) itself we need to discuss the influence of the diffusion on
the product1c(k, t)1c(−k, t) between1c(k, t) and its conjugate complex. Considering

that (d/dt)(1c(k, t)1c(−k, t)) = 1
◦
c(k, t)1c(−k, t) + 1c(k, t)1

◦
c(−k, t), that p(k) =

p(−k) and that〈1 ◦
c(k, t)〉D and〈1 ◦

c(−k, t)〉D are given by (20) or its conjugate complex,
we find

〈(d/dt)(1c(k, t)1c(−k, t))〉D = −p(k) 1c(k, t)1c(−k, t). (22)

From (22), we can calculate, fort > 0, the expectation value〈(1c(k, t)1c(−k, t))〉D
due to the diffusion process, found for a given initial1c(k, t = 0)1c(−k, t = 0). What
is additionally required is the final value to which〈(1c(k, t)1c(−k, t))〉D decays in the
limit t → ∞. This final value is the expectation value〈1c(k)1c(−k)〉, so an integration
of (22) yields

〈(1c(k, t)1c(−k, t))〉D = 〈1c(k)1c(−k)〉 + {1c(k, t = 0)1c(−k, t = 0)

−〈1c(k)1c(−k)〉} e−p(k)t . (23)

This equation shows an exponential decay with a time constant 1/p(k).

4.3. The numbers of bonds and their correlation functions

In this chapter, we calculate the correlation functions〈1Zx(t)1Zx(t=0)〉 and
〈1Zx(t)1Zy(t = 0)〉. Consider the productc(R, t)c(R+ax, t), which is unity if the bond
(of type x) between the sites atR andR + ax exists and is zero otherwise. Accordingly,
the numberZx(t) of bonds of typex at time t is given by

Zx(t) =
∑
R

c(R, t)c(R + ax, t) =
∑
R

{1c(R, t) + c}{1c(R + ax, t) + c}

=
∑
R

1c(R, t) 1c(R + ax, t) + Nc2. (24)

The second expression holds because
∑

R 1c(R, t) = ∑
R 1c(R + ax, t) = 0. Passing to

the Fourier transforms1c(k, t), we can rewrite (24) as

Zx(t) = N
∑
k 6=0

1c(k, t)1c(−k, t) e−kxa + Nc2. (25)

The term fork = 0 is omitted in the summation since1c(k = 0, t) = 0, and symmetry
allows replacing e−kxa by cos(kxa) in the following equations. According to (25), the
deviation1Zx(t) = Zx(t) − 〈Zx(t)〉 of Zx(t) from its expectation value is given by

1Zx(t) = N
∑
k 6=0

{1c(k, t)1c(−k, t) − 〈1c(k)1c(−k)〉} cos(kxa). (26)

In the corresponding expression for1Zy(t), cos(kxa) is replaced by cos(kya).
We consider next the correlation functions, and calculate〈1Zx(t)1Zx(t = 0)〉 first.

Replacing1c(k, t)1c(−k, t) in (26) by its expectation value due to diffusion as given in
(23), and averaging over all initial1c(k, t = 0)1c(−k, t = 0), we find

〈1Zx(t)1Zx(t = 0)〉 = N2

〈 ∑
k 6=0

{1c(k, t = 0)1c(−k, t = 0) − 〈1c(k)1c(−k)〉}

× cos(kxa) e−p(k)|t | ∑
k′ 6=0

{1c(k′, t = 0)1c(−k′, t = 0)
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−〈1c(k′)1c(−k′)〉} cos(k′
xa)

〉
(27)

Since the correlation function is an even time function, we accounted in (27) also for
negative times by writing the absolute value oft in the exponential function. Omitting the
time variable in the correlation amplitudes (but not in the correlation function), and defining
k1 6= 0, plusk2 6= 0 andk2 6= k1 later, (27) yields

〈1Zx(t)1Zx(t = 0)〉 = N2
∑
k 6=0

∑
k′ 6=0

{〈1c(k)1c(−k)1c(k′)1c(−k′)〉

−〈1c(k1)1c(−k1)〉2} cos(kxa) cos(k′
xa) e−p(k)|t |. (28)

To proceed further, we use the identity (fork 6= 0 andk′ 6= 0)

〈1c(k)1c(−k)1c(k′)1c(−k′)〉 = 〈1c(k1)1c(−k1)1c(k2)1c(−k2)〉
+{〈(1c(k1)1c(−k1))

2〉 − 〈1c(k1)1c(−k1)1c(k2)1c(−k2)〉}δk,±k′ (29)

with which the right-hand side of (28) can be split up into two terms

〈1Zx(t)1Zx(t = 0)〉 = 2N2
∑
k 6=0

{〈(1c(k1)1c(−k1))
2〉 − 〈1c(k1)1c(−k1)1c(k2)

×1c(−k2)〉} cos2(kxa) e−p(k)|t | + N2
∑
k 6=0

∑
k′ 6=0

{〈1c(k1)1c(−k1)1c(k2)

×1c(−k2)〉 − 〈1c(k1)1c(−k1)〉2} cos(kxa) cos(k′
xa) e−p(k)|t |. (30)

The first sum on the right-hand side extends solely overk (its factor of two reflects the
fact thatδk 6=k′ in (29) applies for bothk = k′ andk = −k′). Finally, we consider that the
only term in the second sum that depends onk′ is cos(k′

xa), and that a summation overk′

which includesk′ = 0 would yield zero because of this term. By adding and subtracting
such a term fork′ = 0, we can write (30) as

〈1Zx(t)1Zx(t = 0)〉 = 2N2
∑
k 6=0

{〈(1c(k1)1c(−k1))
2〉 − 〈1c(k1)1c(−k1)1c(k2)

×1c(−k2)〉} cos2(kxa) e−p(k)|t | − N2
∑
k 6=0

{〈1c(k1)1c(−k1)

×1c(k2)1c(−k2)〉 − 〈1c(k1)1c(−k1)〉2} cos(kxa) e−p(k)|t | (31)

where both integrals on the right-hand side extend only overk.
We consider now the limitN → ∞. Appendix C shows that, in this limit,

〈1c(k1)1c(−k1)1c(k2)1c(−k2)〉 and 〈1c(k1)1c(−k1)〉2 differ insignificantly, so that
the second sum of the right-hand side of (31) can be neglected (the fluctuations of
1c(k1)1c(−k1) are uncorrelated for differentk1). It shows also that the expression
〈(1c(k1)1c(−k1))

2〉 − 〈1c(k1)1c(−k1)1c(k2)1c(−k2)〉 in the first sum is given by
〈1c(k)1c(−k)〉2, which is c2(1 − c)2/N2 according to (16). Using these results, and
passing from a sum to an integral over the first Brillouin zone (15), we can write (31) as

〈1Zx(t)1Zx(t = 0)〉 = 2Nc2(1 − c)2
( a

2π

)3

×
∫ π

a

− π
a

∫ π
a

− π
a

∫ π
a

− π
a

cos2(kxa) e−p(k)|t | d3k (32)

where the exclusion of the point atk = 0 is disregarded because of the limitN → ∞.
Specifically for t = 0 (where exp(−p(k)|t |) = 1), the integral of cos2(kxa) over the first
Brillouin zone yields1

2(2π/a)3, so that fluctuation amplitude〈1Zx(t = 0)1Zx(t = 0)〉 =
〈1Z2

x〉 is given by the simple expression

〈1Z2
x〉 = Nc2(1 − c)2. (33)
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The calculation of〈1Zx(t)1Zy(t = 0)〉 is performed in the same way as that leading
to (32), yielding

〈1Zx(t)1Zy(t = 0)〉 = 2Nc2(1 − c)2
( a

2π

)3

×
∫ π

a

− π
a

∫ π
a

− π
a

∫ π
a

− π
a

cos(kxa) cos(kya) e−p(k)|t | d3k. (34)

Finally, for t = 0, the fluctuation amplitude〈1Zx1Zy〉 is given by

〈1Zx1Zy〉 = 0 (35)

because of either of the terms cos(kya) or cos(kya) under the integral in (34). This means
that there is no correlation in the numbers of bonds of typesx and y at the same time,
whereas a correlation exists at different times since, in this case, exp(−p(k)|t |) varies with
k so the integral over the first Brillouin zone differs from zero.

5. The relaxation spectra and their discussion

The previous sections provide all the equations required for the calculation of the relaxation
of the compressibilitỹs(1) = s11 + 2s12 and of the shear compliancẽs(2) = s11 − s12. We
discuss the compressibility first. According to (6), (10), (33) and (35), the total relaxation
1(s12 + 2s12) of the compressibility is given by

1(s12 + 2s12) = (a3/kBT )c2(1 − c)2(λ1 + 2λ2)
2 (36)

wherea3 = V/N . The relaxation spectrum of the compressibility, i.e. its imaginary part
(s11 + 2s12)

′′, is obtained from (5), (10), (32) and (34), where the Fourier transformation
(5) of the exponential decay processes in the correlation functions of (32) and (34)
yields Lorentzian lines. Using the total relaxation of (36), the relaxation spectrum of the
compressibility can be written as

(s11 + 2s12)
′′ = 1(s12 + 2s12)

( a

2π

)3

×
∫ π

a

− π
a

∫ π
a

− π
a

∫ π
a

− π
a

2ωp(k)

ω2 + p2(k)
{cos2(kxa) + 2 cos(kxa) cos(kya)} d3k. (37)

For the shear compliance, the total relaxation1(s11 − s12) follows from (6), (13), (33)
and (35). The result for this quantity is

1(s12 − s12) = (a3/kBT )c2(1 − c)2(λ1 − λ2)
2. (38)

From (5), (13), (32) and (34), the relaxation spectrum is, similarly to the above, obtained
as

(s11 − s12)
′′ = 1(s12 − s12)

( a

2π

)3

×
∫ π

a

− π
a

∫ π
a

− π
a

∫ π
a

− π
a

2ωp(k)

ω2 + p2(k)
{cos2(kxa) − cos(kxa) cos(kya)} d3k. (39)

The four equations (36)–(39) are our central result. In agreement with previous
calculations [1, 2], they yield a relaxation of boths11 + 2s12 ands11 − s12, and they predict
that the relaxation spectra are proportional toc2(1 − c)2.

The derivation of the relaxation spectra is rigorously correct within our model
assumptions. According to the definition ofp(k) in (21), the spectra depend only on three
(adjustable) parameters, the jump rate0 and the two componentsλ1 andλ2 of theλ tensor,



A lattice gas model for the Zener relaxation 7243

considering temperature and lattice parameter as given. The jump rate is subsequently
expressed by the mean residence timeτres(c→0) = 1/(60) of the lattice gas atoms in the
limit c→0 (see section 2).

The integrals in the relaxation spectra of (37) and (39) can only be evaluated numerically.
To demonstrate their frequency dependence, we present in figure 2 the two relaxation
spectra, normalized to the total relaxation, in a plot versus log(ωτres(c → 0)), together
with a Debye peak [1] with a relaxation timeτres(c → 0). For a single relaxation time,
normalized spectra have the shape of a Debye peak. The relaxation spectrum of the shear
compliance is moderately broadened in comparison with a Debye peak, indicating a small
distribution width of its relaxation times. The spectrum of the compressibility exhibits a
sizable broadening so, in this case, widely different relaxation times contribute (in fact, the
distribution of the relaxation times can directly be obtained from the correlation functions
in (32) and (34)). Further, the maxima of the peaks for the compressibility and the shear
compliance are atωτres(c→0) = 2.01 andωτres(c→0) = 1.94, respectively.

Figure 2. The normalized relaxation spectra (solid lines)(s11 + 2s12)
′′/1(s11 + 2s12) and

(s11 − s12)
′′/1(s11 − s12) of the compressibilitys11 + 2s12 and the shear compliances11 − s12,

respectively, in a plot versus log(ωτres (c→0)). The spectra are normalized to their respective
total relaxation strength. The broken line shows a Debye peak with a relaxation timeτres (c→0).

The spectra exhibit a distribution of relaxation times, but these distributions are
determined solely by the mean residence timeτres(c → 0). An immediate application
follows if τres(c → 0) exhibits an exponential temperature behaviour. In this case, the
activation energy is reliably determined from a temperature shift of the peak maximum,
although this is in general not possible for a distribution in the relaxation times (in this
case, a further requirement is a common activation energy for all the relaxation times) [1].
The fact that the peak shift yields the true activation energy holds also for the generally
expected situation that both the compressibility and the shear compliances11−s12 contribute
to the anelastic relaxation since the ratio between the total relaxations of the compressibility
and the shear compliance is temperature independent.
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The present lattice gas model holds for a simple cubic lattice and considers only bonds
between nearest-neighbour sites. This is, in fact, the simplest version of such a model.
There is no principal difficulty in adjusting it to other lattices, and to account additionally
for bonds between more distant sites. In this case, a relaxation of the shear compliance
s44/2 will also be found. Finally, we recall the discussion in section 1, pointing out that the
present results describe the Zener relaxation in both interstitial and substitutional alloys, in
spite of the fact that a lattice gas model might primarily suggest an application to interstitial
atoms.

6. Conclusion

We have discussed the anelastic Zener relaxation in a concentrated lattice gas which is
non-interacting except for the exclusion of multiple occupancies. The relaxation results
from the stress-induced formation and dissolution of bonds between lattice gas atoms on
nearest-neighbour sites. It is described by three (adjustable) parameters, two components
of the λ tensor of the bonds and the jump rate of the atoms. We derive, rigorously correct
within our model assumptions, the relaxation spectra for both the compressibilitys11 + 2s12

and the shear compliances11−s12. The two spectra are proportional toc2(1−c)2, wherec is
the occupation probability of a given site. The relaxation spectrum of the shear compliance
is moderately broadened in comparison with a Debye relaxation, whereas the broadening
of the spectrum of the compressibility is significant. The results are applicable to the Zener
relaxation in both interstitial and substitutional alloys.
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Appendix A. The presence of the volumeV in (5) and (6)

We consider a cube of volumeV (a cube for reasons of simplicity). In this case, a true
displacementx that corresponds tõε is x = ε̃V

1
3 , and a true forcef that corresponds tõσ

is f = σ̃V
2
3 . The complex displacement–force relationship is then

x(ω) = α(ω)f (ω) (A1)

whereα(ω) = σ̃ (ω)/V
1
3 . The free enthalpyVg stored inV in the presence of a static

f (ω = 0) is given byVg = 1
2V s̃2(ω = 0)σ̃ (ω = 0) = 1

2α(ω = 0)f 2(ω = 0). According
to [30], the relationship between the correlation function〈x(t)x(t = 0)〉 and the imaginary
part α′′(ω) of α(ω) is described by the equation

α′′(ω) = ω

2kBT

∫ ∞

−∞
〈x(t = 0)x(t)〉eiωt dt (A2)

in which V does not appear. Expressing nowα′′(ω) again bys̃′′(ω), and x̃ by ε̃(ω), we
end up with (5) whereV shows up. Finally, the presence ofV in (6) follows in the same
way as its presence in (5).

Appendix B. The Snoek relaxation ofs11 − s12

We discuss the Snoek relaxation ofs11 − s12 for n octahedral interstitials in a bcc metal
with NA atoms [1, 2]. The volume per metal atom isv0, and the interstitial concentration
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cI = n/NA is small for reasons of simplicity. There are octahedral sites of typesx, y and
z, and the numbers of interstitials on these sites arenx , ny andnz. The expectation value
for each of these numbers ifn/3, so thatnx , ny andnz deviate from their expectation value
by 1nx = nx − n/3, 1ny = ny − n/3 and1nz = nz − n/3. Usingλ tensors as in (1), the
strainεij caused by the interstitials can be described by

εij = (1nx/NA)λ
(x)
ij + (1ny/NA)λ

(y)

ij + (1nz/NA)λ
(z)
ij . (B1)

The definition of theλ tensors and the above expression for the strainεij agree with the
conventional notation [1, 2].

Using the orthogonal and normalized strainε̃(2) as in (11), and proceeding identically
as in section 3, the correlation function forε̃(2) is given by (see (13))

〈ε̃(2)(t)ε̃(2)(t = 0)〉 = (λ1 − λ2)
2

N2
A

{〈1nx(t)1nx(t = 0)〉 − 〈1nx(t)1ny(t = 0)〉} (B2)

where〈1nx(t)1nx(t = 0)〉 and 〈1nx(t)1ny(t = 0)〉 are correlation functions of1nx and
1ny , respectively.

We discuss only the total relaxation so that, according to (6), it suffices to calculate
the time-independent correlation amplitudes〈1n2

x〉 and 〈1nx1ny〉. These amplitudes are
themselves correlated. Consider the sum1nx + 1ny + 1nz, which is zero. From the
expectation value of the square of this sum, we yield 3〈1n2

x〉+6〈1nx1ny〉 = 0, accounting
for the fact that, for instance,〈1n2

x〉 = 〈1n2
y〉 and 〈1nx1ny〉 = 〈1nx1nz〉. Accordingly,

we find 〈1nx1ny〉 = − 1
2〈1n2

x〉, so that (B2) can be rewritten as

〈ε̃(2)(t)ε̃(2)(t)〉 = 3
2[(λ1 − λ2)

2/N2
A]〈1n2

x〉. (B3)

To determine〈1n2
x〉, we consider that then interstitials occupy three different types of

site, where the probability for occupying a site of typex (or y or z) is r = 1
3. Therefore,

〈1n2
x〉 = r(1 − r)n = 2

9n, as long ascI = n/NA � 1 [33]. From this relation, and from
(B3) and (6), we regain the familiar literature result [1, 2]

1s̃(2) = 1(s11 − s12) = (1/3kBT )(nV/N2
A)(λ1 − λ2)

2 = (cI v0/3kBT )(λ1 − λ2)
2. (B4)

Appendix C. Correlation amplitudes in the k space

The correlation amplitudes of products of1c(k) can be traced to correlation amplitudes of
products of the occupation probabilities1c(R) (we omit the time variablet since all product
terms in the correlation amplitudes hold for the same time). We discuss〈1c(k)1c(−k)〉
first. According to (14), this quantity can be written as

〈1c(k)1c(−k)〉 = 1

N2

∑
R

∑
R′

〈1c(R)1c(R′)〉 eik·R e−ik·R′
(C1)

Defining R1 and R2 (plus R3 and R4 later) as the positions of different sites, and using
the identity

〈1c(R)1c(R′)〉 = 〈1c(R1)1c(R2)〉 + 〈{1c2(R1) − 1c(R1)1c(R2)}〉δR,R′ (C2)

we can rewrite (C1) as

〈1c(k)1c(−k)〉 = 〈1c(R1)1c(R2)〉δk,0 + 1

N
〈{1c2(R1) − 1c(R1)1c(R2)}〉. (C3)

The value of〈1c2(R1)〉 is c(1−c) [31]. This follows from the two values 1−c and−c that
1c(R1) has with the probabilitiesc and 1− c, respectively. For a fluctuating total number
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of lattice gas atoms, the situation discussed by Krivoglaz [31], the occupation probabilities
of different sites are uncorrelated, so that〈1c(R1)1c(R2)〉 = 0. This yields the result of
(16), valid for all k including k = 0. On the other hand, the constraint of a fixed total
number of atoms causes a correlation in the occupation probabilities of different sites. To
demonstrate this, we assume first siteR1 being occupied (with probabilityc). In this case,
the number of lattice gas atoms which occupy the remainingN − 1 sites isNc − 1, so that
the occupation probability of siteR2 is (Nc − 1)/(N − 1), which differs fromc. On the
other hand, if siteR1 is unoccupied (with probability 1− c), the occupation probability
that follows for siteR2 is Nc/(N − 1). These occupation probabilities for siteR2 lead to
〈1c(R1)1c(R2)〉 = −c(1− c)/(N − 1), yielding, according to (C3),〈1c(k)1c(−k)〉 = 0
for k = 0 (as required) and〈1c(k)1c(−k)〉 = c(1− c)/(N −1) for k 6= 0. Therefore, it is
seen that the constraint of a fixed total number of lattice gas atoms changes〈1c(k)1c(−k)〉
for k 6= 0 insignificantly in the limitN →∞.

In a similar way, we can derive the relation

〈{1c(k1)1c(−k1)}2〉 − 〈1c(k1)1c(−k1)1c(k2)1c(−k2)〉
= 1

N2
〈{1c2(R1) − 1c(R1)1c(R2)}{1c2(R3) − 1c(R3)1c(R4)}〉 (C4)

where we definek1 6= k2 and discuss, for reasons of simplicity, only the casek1 6= 0
and k2 6= 0. For a fluctuating number of atoms, where different sites are uncorrelated,
the expectation value of (C4) is〈1c(k)1c(−k)〉2 = c2(1 − c)2/N2, the result we use in
subsection 4.3. However, it is also seen that the constraint of a fixed number of atoms
changes this result only by an additional term which is a factor of 1/N smaller, so that this
constraint is again insignificant in the limitN →∞.

Finally, we present the relation

〈1c(k)1c(−k)1c(k′)1c(−k′)〉
= 1

N3
{c(1 − c) − 6c2(1 − c)2} + 1

N2
c2(1 − c)2(1 + δk,±k′) (C5)

holding, for reasons of simplicity, only for a fluctuating number of atoms (in this case,
k, and/or k′ can also be zero). Because the factor 1/N3 in the first term of the
right-hand side (against the factor 1/N2 in the second term), the difference between
〈1c(k1)1c(−k1)1c(k2)1c(−k2)〉 and〈1c(k1)1c(−k1)〉2 = c2(1−c)2/N2 is insignificant
in the limit N →∞. This fact is used in subsection 4.3 to neglect, for instance, the second
sum on the right-hand side of (31).
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